Are Hydrogen Fuel Cells Vehicles Dead On Arrival?

Posted on April 1st, 2014 by

The national vision by politicians, economists, industrialists and environmentalists to transition to hydrogen Fuel Cell Careconomy by 2030 seems deadlocked, with hydrogen fuel cells projected to represent a $3 billion market of about 5.9 GW by 2030, according  to Lux Research, Figure 1.(1)

The dream of fuel cell vehicles powered by hydrogen from zero-carbon sources such as renewable power or nuclear energy comes from estimates that the cost of avoided carbon dioxide would be more than $600 a metric ton – ten times higher than most other technologies under investigation.

Yet today, there are only two fuel-cell vehicles (FCEV) available in the U.S. market – Honda’s FCX Clarity, which is available to lease, and the Mercedes-Benz F-Cell.

Fuel Cell Market

Figure 1
Fuel Cell Market: 2012 – 2030

Fuel cells combine the best of electric and gasoline cars without the downsides, the automakers say. They drive like electric cars—quietly, with tons of off-the-line power—but can be refueled just like gasoline-powered cars, writes Jerry Hirsch for the Los Angeles Times.

In another article for the Los Angeles Times, Jerry Hirsh points out:

“….. As they (fuel cells) move into production, fuel cell cars should gain a price advantage over vehicles that run on battery power.”

“…..lesser weight and higher energy density of fuel cells also enable them to be used in a wider range of vehicles, from a family sedan to full-size trucks to city buses.“

BEVs have a number of significant issues. Unless you are willing to shell-out for Tesla’s Model S, range is still a significant issue. And even if you do opt for the Model S, the battery can take 20 minutes just to reach 50% charge, compared to a few minutes’ refueling for ICE cars, states Katie Spence for The Motley Fool.

Robert Duffer for the Chicago Tribune states, Fuel cell cars use a stack of cells that combine hydrogen with oxygen in the air to generate electricity, which powers the motor that propels the car. The only emission is water vapor and, with a 300-mile range can run 3 or 4 times longer than the most capable electrics, aside from Tesla’s all-electric Model S, which has a range of 265 miles. The Nissan Leaf has a 75-mile range.

Unfortunately, the push to develop a hydrogen economy in the U.S.; sparked by the Matsunaga Hydrogen Research, Development, and Development Act of 1990; never gained sufficient traction and political support to overcome major barriers to market entry such as high capital costs and lack of an infrastructure. Capitol Hill’s indifference to FCEVs is underscored by The Department of Energy (DoE) hydrogen and fuel cells budget history from 1990 to 2011, Figure 2.

DoE Hydrogen and Fuel Cells Budget History 1990  2011

Figure 2
DoE Hydrogen and Fuel Cells Budget History: 1990 – 2011
Source: U.S. Department of Energy

Including years 2012 – 2014, the total 25-year DoE budget for hydrogen and fuels research, development, demonstrations and deployment (RDD&D) was about $2.8 billion, an average annual allocation of $112 million. To put this into perspective, the 2014 budget for hydrogen RDD&D of $100 million, i.e., 0.35 percent of the total DoE budget request of $28.4 billion. This falls short of other renewable technologies such as solar, bioenergy and wind technologies, which received allocations of $365 million (1.25 percent), $282 million (0.99 percent) and $144 million (0.51 percent) for FY 2014, respectively.

The DoE budget for FY 2014 includes an allocation of $575 million for Vehicle Technology Programs. However, fuel cell R&D is not directly included the funding profile for these programs. The main emphasis of Vehicle Technologies is battery/energy storage R&D and vehicle technologies deployment.

The large increase in expenditures between 2002 and 2011 reflect President Bush’s announcement of a major hydrogen initiative in his 2003 State of the Union address:

“Tonight I am proposing $1.2 billion in research funding so that America can lead the world in developing clean, hydrogen-powered automobiles. A simple chemical reaction between hydrogen and oxygen generates energy, which can be used to power a car producing only water, not exhaust fumes. With a new national commitment, our scientists and engineers will overcome obstacles to taking these cars from laboratory to showroom so that the first car driven by a child born today could be powered by hydrogen, and pollution-free.”

Though marginalized throughout its decades’ long history, hydrogen fuel cell vehicles may not be entirely dead on arrival. Today, the media brings a steady stream of discussions, publications and announcements about activity in FCEVs. There are just two fuel-cell vehicles available in the U.S. market: Honda’s FCX Clarity, which is available to lease, and the Mercedes-Benz F-Cell, Figure 3. The most recent reverberations come from automakers, such as Toyota, Hyundai, and Honda, testing and planned production of hydrogen fuel cell vehicles for 2015, Figure 4.

2013 Mercedes-Benz F-Cell

Figure 3
2013 Mercedes-Benz F-Cell


Figure 4 Fuel Cell Vehicles: A Look Inside

Figure 4
Fuel Cell Vehicles: A Look Inside

The Tucson Fuel Cell offers, Figure 5:

  • Customers in the Los Angeles/Orange County region a rental price $499 per month for a 36-month term, with $2,999 down. This includes unlimited free hydrogen refueling.
  • Driving range up to an estimated 300 miles;
  • Capable of full refueling in less than 10 minutes, similar to gasoline;
  • Minimal reduction in daily utility compared with its gasoline counterpart;
  • Instantaneous electric motor torque (221 lb-ft);
  • Minimal cold-weather effects compared with battery electric vehicles;
  • Reliability and long-term durability;
  • No moving parts within the power-generating fuel cell stack;
  • More than two million durability test miles on Hyundai’s fuel cell fleet since 2000; and
  • Extensive crash, fire and leak testing successfully completed.
Hyundai aims to produce 1,000 Tuscon fuel-cell electric vehicles by 2015

Hyundai aims to produce 1,000 Tuscon fuel-cell electric vehicles by 2015

Additionally, Daimler AG, Ford Motor Company and Nissan Motor Co., Ltd. recently announced a cooperative agreement to accelerate the commercialization of fuel cell electric vehicle technology, Figure 6.

Nissan’s Next Generation Fuel Cell Stack released in 2011

Figure 6
Nissan’s Next Generation Fuel Cell Stack released in 2011

Even with insufficient support from the federal government, lack of a hydrogen infrastructure, and cost uncertainties, FCEVs are poking their head above the radar.  In general, automakers see FCEVs as the most judicious path to satisfy stringent zero-emission vehicle mandates set by California and nine other states. California’s zero-emission vehicle (ZEV) mandate requires 15 percent of all new cars sold be emission free by 2025. The ten-state alliance wants about 3.3 million ZEVs on the road by 2025.

Without question, the most important barrier to larger‐scale implementation of low carbon technologies comes down to one factor: the cost of the technology.  Fuel cell costs continue to decline significantly for light duty vehicles, with projected volume costs lower by more than 80 percent since 2002 and more than 35 percent since 2008, according to the U.S. Department of Energy (DOE), Figure 7.(8) The cost per kilowatt (kW) for high volume production of transportation fuel cells moved closer to DOE’s target of $30 per kW where they will be cost‐competitive in light‐duty vehicles.

Figure 7

Projected Fuel Cell Transportation System Costs per kW, Assuming High Volume Production (500,000 units per year)

Source: U.S. Department of Energy

Figure 7
Projected Fuel Cell Transportation System Costs per kW, Assuming High Volume Production (500,000 units per year)
Source: U.S. Department of Energy

In terms of fuel cost, “REB Research, makes hydrogen generators that produce 75 slpm of ultra-pure hydrogen by steam reforming methanol-water in a membrane reactor. A generator of this type produces 9.5 kg of hydrogen per day, consuming 69 gal of methanol-water. At 80¢/gal for methanol-water, and 10¢/kWh for electricity, the hydrogen costs $2.50/kg., or $5,000 over a 120,000 mile life. This is somewhat cheaper than gasoline, but about twice the dollar per mile cost of a Tesla S if only electric cost is considered. The hydrogen car is much cheaper on a per-mile basis, though when you include the fact that the battery has only a 120,000-mile life. A 120,000 mile life is short for a luxury suv , and very short for a truck or bus.”

The DoE Fuel Cell Technology Office released a 74-page report titled “2012 Fuel Cell Technologies Market Report.”(10) The report concludes: “the trends for the fuel cell industry were encouraging in 2012. Total fuel cell shipments increased in 2012, in terms of total units and megawatts (MW). Other notable events highlighted include:

“Total fuel cell shipments in 2012 increased 34 percent over 2011 and 321 percent over 2008.”

“Roughly 30,000 fuel cell systems were shipped in 2012, up from around 5,000 shipments in 2008, largely due to Japan’s residential fuel cell program,” Figure 8.

“The number of megawatts shipped on an annual basis more than doubled between 2008 and 2012, rising from about 60 MW to more than 120 MW.”

“The projected cost of a transportation fuel cell system was at $47 per kW in 2012 and continues to approach DOE’s target of $30 per kW.”

“Fuel cell costs continue to decline significantly for light duty vehicles, with projected volume costs lower by more than 80 percent since 2002 and more than 35 percent since 2008.”

“The Obama Administration implemented new incentives for fuel cell and other advanced technology vehicles when it raised the fuel economy standard in the U.S. to 54.5 mpg for cars and light-duty trucks.”

“Cumulative global investment in fuel cell companies totaled $853.6 million between 2010 and 2012. This is a significant increase over the $671.4 million invested in fuel cell companies between 2009 and 2011.”

Figure 8 Fuel Cell Systems Shipped by Application, World Markets: 2008-2012 Source: Navigant Research

Figure 8
Fuel Cell Systems Shipped
by Application, World Markets: 2008-2012
Source: Navigant Research

Another major challenge for FCEVs is a nascent infrastructure to produce, distribute, store, deliver and maintain hydrogen fuel. Today there are only ten public hydrogen-fueling stations in the United States, according to the DoE. California is spending as much as $20 million a year to help bring the number of fueling stations up to 100 within the next five years or so. There should be 28 hydrogen stations spread across California’s metropolitan areas by 2015, when all three of these hydrogen models will be for sale.

One remaining question is the reliability, power quality, endurance and longevity of mobile fuel cells.

Although fuel cells provide electricity at high efficiencies with exceptional environmental sensitivity, their long-term performance and reliability under real-world conditions remains largely unanswered.

However, according to Fuel Cells 2000, “The material handling sector has provided the fuel cell industry with an early market and technology indicator in the U.S., with deployments and orders for forklifts and lift trucks inching closer to 5,000. This includes many big name companies with multiple repeat orders, such as BMW, Coca-Cola, Procter & Gamble, Kroger and Lowe’s,” Figure 9. The report further states that fuel cells were found to last longer than batteries, and operated in freezing temperatures as low as -20° F (-29° C).”

Figure 9 Fuel Cell-Powered Material Handling Vehicle Source: Fuel Cells 2000

Figure 9
Fuel Cell-Powered Material Handling Vehicle
Source: Fuel Cells 2000


Fuel Cells 2000 reports, fuel cells last longer than batteries, and also operate in freezing temperatures, which led Walmart, a company that had already tested and deployed several hundred fuel cell forklifts at facilities in Ohio and Ontario, Canada, to choose fuel cell lift trucks for its sustainable refrigerated distribution center in Alberta, Canada. The fuel cell-powered vehicles operate in conditions as low as -20° F (-29° C).

In closing, substantial reduction of fossil fuels from all sectors of the economy by renewable energy and zero-emission vehicles is the Holy Grail of modern society. Zero-emissions vehicles come in two flavors BEV and FCEV. BEVs longer sales history and wider public-private support give them an apparent competitive advantage over FCEVs. After many decades of false hopes, FCEVs market introduction may be a Hail Mary play by automakers to achieve stringent emission standards. To succeed, FCEVs must address BEVs performance and endurance limitations. High production costs and a relatively nonexistent hydrogen-fueling infrastructure may prolong the agony of success or failure. Until automakers sell FCEV in volume, they are expected to cost more than comparable gasoline-powered and electric vehicles, not including the premium priced Tesla BEV, which is reported by Forbes to have outsold the nearest competitor by more than 30%.(12). Public-private investments in building a hydrogen-refueling infrastructure are essential for FCEVs long-term success. In the final analysis, BEVs are an inadequate technology push indifferent to consumer needs and driving patterns. As a technology solution, FCEVs are arising from the dead because the industry believes further Lithium-ion battery advances will not substantially improve the range and performance impediments of electric cars. Will FCEVs and BEVs prosecute a war of attrition? My money is on FCEVs.


The opinions expressed in this article are solely those of the author Dr. Barry Stevens, an accomplished business developer and entrepreneur in technology-driven enterprises. He is the founder and President of TBD America Inc., a global technology business development group serving the private and public sectors in energy, fuels and water industries. To learn more about TBD America, please visit


Related Posts:

Tags: , , , , , , , , , , ,

One Person has left comments on this post

» Liberty said: { Jun 9, 2014 - 10:06:00 }

The analysis ignores the decreasing cost of batteries and the existance of phevs. Most of the country can do perfectly well on phevs, which don’t require a large fueling infrastructure change.

Fuel cells have until maybe 2020 before 200 mile bevs are affordable. That along with car sharing services and phevs, lng trucks, should put a moat in front of building a 10,000 psi hydrogen refueling infrastructure. Get the fcv to run on methane or methanol, and the price of the tanks and the fuel drops substantially, but it makes these infrastructure projects look very bad.

This blog is kept spam free by WP-SpamFree.