Can Hydrogen Fueling Stations Be Far Behind? 3rd Part

Posted on April 29th, 2014 by
   

Read the second part here.

Table 5 Public and Private Alternative Fuel Station Counts by State and Fuel Type U.S. Department of Energy Alternative Fuels Data Center, last update March 28, 2014

Table 5
Public and Private Alternative Fuel Station Counts by State and Fuel Type
U.S. Department of Energy Alternative Fuels Data Center, last update March 28, 2014

Notes:

  1. “Totals by Fuel” include all 50 states and District of Columbia.
  2. Electric charging units, or EVSE, are counted once for each outlet available. Includes legacy chargers, but does not include residential electric charging infrastructure. 

The cost of a hydrogen fueling station is another critical factor preventing FCEVs gaining traction, with can range anywhere between $500,000 and $3,000,000 per installation. The price depends on factors such as location (cost of real estate, codes and permits and utilities), number and pressure of the pumps, the number and types of vehicles the facility intends to serve on a daily basis – current and future (i.e., light, medium-, heavy-duty vehicles), time frame needed for vehicle refueling (fast-fill or time-fill), security and regulatory measures. Table 6 profiles ten hydrogen fueling stations operational in California.

Table 6

Table 6

A hydrogen motor fuel dispensing facility is a service station that:

1) receives hydrogen produced offsite or produces hydrogen onsite by reforming natural gas;

2) stores liquid hydrogen or compressed hydrogen gas or both; and

3) dispenses hydrogen (as a gas or liquid) to fuel cell vehicles and vehicles with hydrogen-powered internal combustion engines.

Fueling at hydrogen stations is similar to fueling at natural gas fueling stations, but at somewhat higher pressures. Equipment for these stations normally includes storage tanks, compressors and dispensers, most of which are located in steel enclosures. Hydrogen is compressed to 10,152 psi and stored above ground in cylinders.  Hydrogen supplied to the station is either a compressed gas or a liquid. Because of the unique properties of hydrogen, some special site and safety considerations it is critical to take into considerations location for space, zoning, conditional use permits and building codes.

All new technologies introduced into the public arena pose various regulatory challenges to new codes and standards that provide safe but expeditious permitting by state and local governments. Hydrogen fueling stations are no exception. Especially in the case of hydrogen where there is limited information on commercial use of hydrogen and fire safety codes.

According to the U.S. Department of Energy, “Experience in permitting hydrogen fueling stations is thus far limited to a few states and local governments. However, enough stations have been built so that local jurisdictions do not have to reinvent the wheel. In approving permits for these stations, state and local jurisdictions have used existing codes and standards available from organizations such as the International Code Council (ICC), National Fire Protection Association (NFPA), American Society of Mechanical Engineers (ASME), and Compressed Gas Association (CGA). In recent years, the ICC has adopted specific provisions for hydrogen fueling stations in its International Fire Code and the NFPA has consolidated and updated key hydrogen standards as noted in the box on the next page. In addition, the U.S. Department of Energy has begun a major effort at the national level to help facilitate the permitting process for hydrogen fueling stations. Individual states such as California and Michigan have similar efforts at the state-level.”

Figure 3 shows the complexity of jurisdictional authority and related codes. The U.S. Department of Energy issued a comprehensive guide on “Permitting Hydrogen Motor Fuel Dispensing Facilities.”

Figure3

Figure 3
Agencies and Codes
Fueling and Service – Delivery and Storage – Generation
Source: Oakland Fire Station Fire Department

Some state governments see public-use hydrogen fueling stations similar to gasoline stations, which offer self-service pumps, convenience stores, rest facilities and other services. The major difference is hydrogen dispensing facilities stores and dispenses hydrogen instead of gasoline and diesel fuels to cars, buses, and trucks.

These facilities will offer hydrogen pumps in addition to gasoline or natural gas pumps. Other hydrogen fueling stations will be “standalone” operations.  These stations will be designed and constructed to offer only hydrogen fueling, Figure 4. See 2012 California Environmental Quality Act (CEQA) Statute and Guidelines, Article 19, Section 15303 New Construction or Conversion of Small Structures, p. 225 for guidelines.

Stand alone

Figure 4
Standalone Hydrogen Fueling Station

Locating a hydrogen dispensing facility at an existing gasoline station can expedite the permitting process by allowing the developer to bypass the time consuming environmental review process. To streamline the process, the State of California enacted a provision that often exempts hydrogen fueling station projects from the California Environmental Quality Act (CEQA) if it is located at an existing gasoline/diesel retail fueling facility, Figure 5. The rationale is their small size and correspondingly minimal environmental impacts. See 2012 California Environmental Quality Act (CEQA) Statute and Guidelines, Article 19, Section 15301 Existing Facilities, p. 224 for specific guidelines.

California also allows owners granted a Conditional Use Permit for retail fueling stations to incorporate hydrogen fueling capacity without a public hearing. Public hearings are sometimes problematic and often distort the views of the majority of a community. This distorted influence can unreasonably delay a project. Other reviews and requirements specified by the local and state governments to obtain a building permit remain as is.

Fueling Station

Figure 5
Fueling station provides drivers with both hydrogen and gasoline fuels

The California Governor’s Office of Business and Economic Development works with local, state and federal government agencies, hydrogen station developers, station hosts, electric vehicle regional planners, installers, and hosts, in addition to the automobile companies and other interested parties, to facilitate and accelerate the permitting and establishment of both the hydrogen fueling and electric vehicle charging infrastructure.

As permitting officials and developers become familiar with the basic properties, uses, and safety considerations of hydrogen, they will better understand the construction and operation of hydrogen fueling stations and related codes and standards.

The high cost of hydrogen fueling facilities and lack of FCEVs makes it impossible to justly building and operating a station without Federal and/or State incentive and funding opportunities, Table 6. The Newport Beach Hydrogen Fueling Station illustrates the funding and financing structure.

The station opened to the public July 2012. The facility stores on a daily basis up to 100 kg of gaseous hydrogen from steam methane reforming of natural gas. Production, purification, compression, and storage complete the systems integrated into the station. The owner received a $2.0 million grant from the U.S. Department of Energy as part of a Hydrogen Station Analysis Project to collect data from state-of-the-art hydrogen fueling facilities and demonstrate the footprint and equipment arrangement of such a retail facility.

A general breakdown of the funding / financing structure of the Newport Beach Station is:

  • Total:   4.0 million (ARB estimate February 2011)
  • Govt:    DOE – $2.0 million (2006) for 2nd generation equipment
  • ARB – $1.7 million grant
  • Private / Cost Share: Shell – $2.3 million
  • Public Funding Period: Three years

(ARB = Air Resources Board – California Environmental Protection Agency)

On the state level, California’s Energy Commission (CEC) a leader providing both capital and O&M funding support for Alternative and Renewable Fuel and Vehicle Technology Programs. The CEC investment plan for 2013-2014 allocates $100 million in grants for alternative fuels and vehicles through its Alternative and Renewable Fuel and Vehicle Technology Program. The plan calls for $20 million in funds for an additional 68 hydrogen fueling stations to support the anticipated rollout of these vehicles in 2015-2017. Currently California has about 24 stations are built or in development.

The acceleration of FCEVs in the U.S. is being supported by several incentives. These federal incentives have either expired or about to expire unless extended by Congress and include:

  • Investment tax credits (ITC) through 2106 equal to 30% of the capital cost, up to $3,000/kW, associated with business purchase of qualifying fuel cell products;
  • ITC through 2014 equal to 30% of the capital cost, up to $200,000/station, toward the purchase of hydrogen fueling equipment; and
  • Grant-in-lieu of tax credit through 2011 (expired) equal to 30% of the capital cost, up to $3,000/kW, associated with the purchase of qualifying fuel cell products; and 

The U.S. Department of Energy’s Alternative Fuels Data Center (AFDC) provides information on Federal and State regulations and incentives, data and tools to help fleets and other transportation decision-makers find ways to reduce petroleum consumption through the use of alternative and renewable fuels, advanced vehicles, and other fuel-saving measures.

A listing of any applicable state incentives for FCEVs and hydrogen fueling facilities is given in    the Database of State Incentives for Renewables and Efficiency.

In closing, this paper took a brief look at costs, carbon credits, permitting and incentives of hydrogen fueling stations.  Adoption of FCEVs has a steep hill to climb. It will take legislation like California’s Low Carbon Fuel Standards and grant programs like those available through California’s Energy Commission, and partnerships with automakers, major O&G companies, and fuel cell manufacturers for FCEVs to gain any traction in the marketplace.

Neither EVs nor FCEVs are zero emission; zero emission at the car level, yes; but not when the entire life cycle of the fuel, electrons or hydrogen, is taken into consideration. Generating hydrogen by steam reforming of natural gas produces CO2 even with renewable sources of energy, unless the CO2 by product is captured and sequestered. Same is true of lithium-ion batteries charged with electrons produced from coal- and gas-fired electrical generation stations. Cradle to grave ZEVs will only happen when electricity for charging batteries or electrolyzing water comes from 100% renewable energy. For the time being reduced emissions is a step in the right direction.

Lessons learned from Tesla tell us that cost of the vehicle is not a roadblock to stimulate market interest as long as the vehicle appeals to the buyer and convenient ways to “fill-up” are available. For FCEVs this is obviously easier said than done. Where EVs can plug-and-go anywhere in America and most nations on earth, one would think it’s impossible for FCEVs to make it. But lithium-ion batteries have practical limitations. The question is how money will it take to make noticeable improvements that overcome these limitations.

Possibly the industry – electric vehicles – is looking at the problem the wrong way. Other than where the juice comes from, EVs and FCEVs are fraternal twins. Fuel cells are nothing more than next generation batteries. When lithium-ion battery technology becomes too cumbersome and costly, fuel cells will be there to take over.  Got to run, time to recharge my cell phone.

 

The opinions expressed in this article are solely those of the author Dr. Barry Stevens, an accomplished business developer and entrepreneur in technology-driven enterprises. He is the founder and President of TBD America Inc., a global technology business development group serving the private and public sectors in energy, fuels and water industries. To learn more about TBD America, please visit http://tbdamericainc.com

Related Posts:

Tags: , , , , , , , , ,



Spam Protection by WP-SpamFree


>